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SUMMARY OF RESEARCH AND PUBLICATIONS

Overview

Many important problems in management and engineering involve interactive dIcisions

that must be taken in successive time periods and in the face of uncertainty, In logistics.

for example. inventory systems have to be managed at adequate levels in a cost-minimizing

manner despite vagaries in demand. Distribution systems have to be organized and iro-

grammed to deliver stocks to their destination in reasonable time even thorgh random

delays and breakdowns in transport are possible.

The uncertainty in these problems comes mainly from an inherent lack of full knowl-
edge of what the future may bring. It can in some cases also reflect imperfect information

on the present or past circumstances of the system being guided. Either way. there are

formidable obstacles to optimizing so as to obtain the "best" decision policy for a given

purpose. The difficulties are computational. because problems of enormous size can be

generated in trying to take the possibilities of future branching adequately into account,

but they are also conceptual. Practical ways of modeling the uncertainty, so as to get

somewhere with it mathematically, have been much in need of development.

Until the last few years, there was little real hope of being able to optimize under

uncertainty. For the most part. deterministic models were set up and utilized, even when

stochastic elements were rampant. One notable exception was linear-quadratic r'-guiator
theory in stochastic control. which however covers a very particuiar situation iII systenis

engineering, does not allow for any constraints, and has not proved amenable to gencral-

ization.

This lack of methodology has been unfortunate, because solutions to deterministic

models of stochastic situations tend to be fragile. Decisions based on such models have

no provision for hedging against eventualities that. although unlikely, could be serious if

they arise. The consequences of neglecting uncertainty can therefore be worse thban mere

suboptimality, where less money is saved, say, than would be the case if the true solution
were followed. They can be felt in a lack of built-in redundancy in the decision pattern.

where too much can depend on quantities that. in the end, shouldn't be counted on.

A simple illustration in logistics would be a policy of depending entirely on one

source of supply for a critical item, just because that source was slightly cheaper. In a

deterministic world, nothing could be wrong with such a policy. But in the real world.
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something might happen to interrupt the source and cause a shortage of the iteni just

when it is suddenly needed.

The best known optimization approach to dealing with uncertainty over time has for

many years been that of dynamic programming. While initially attractive in theory. dy-

namic programming has proved unworkable in most applications with finite time horizon

due to the "curse of dimensionality." Even if computers were able to use it to calcu-

late solutions in problems of realistic 6ize, however, there would be definite miathematical

drawbacks to its use, giving motivation to look for something better.

First. dynamic programming suffers from a need to discretize in state space as well

as in time and probability. This essentially means that many of the features of a problem

that might potentially be valuable in solving it. like derivatives and convexity, are simply

tlhrow.n away. Dynamic programming is also handicapped by its mode of working backward

in time from the terminal period. This seems counter to the notion that the present should

be more influential than the future, not only in influencing the nature of a solution but

in finding a solution. It has the effect that if computations are cut off before They are

finished, the output is useless.

Dynamic programming has furnished interesting "steady state" solutions to some

problems over an infinite time horizon. But models in which such solutions make sense

have a very special character, where randomness is associated with a known probability

distribution that never changes over the entire future, and no goals are set up to be met

other than a sort of stabilization of a given system. Such models are far removed from the

problems under discussion here.

Quite a different approach to optimization under uncertainty has been building in

the area of stochastic programming. The ambitions in dynamic programmnhing of being

able to encompass a vast spectrum of relationships between information, observation and

the making of decisiorns. are waived in stochastic programming. The emphasis instead is

on more specific structure supportive of solution techniques such as are inspired by the

successes in linear-quadratic programming and convex programming.

The bulk of the work in stochastic programming has so far concentrated on the two-

stage case. In this case. a decision that is to be made now. under constraints, will be

followed by a single corrective decision after some aspect of the future becomes known.

With some mathematical manipulation. the cost of the corrective decision, as a function

of the initial decision z, takes the form of an expectation c2(z) = E{•. - s)}, where s is

the state of the future, a random variable. With the initial costs denoted by cl(z), the

problem then comes down to minimizing cl(z) + c2(z) subject to constraints on z.

Simple as this may look, the problem is numerically still very formidable due to
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the form of c2 (z). If the expectation refers to integration with respect to a continuous

probability distribution in several variables, it generally can only be approximated in some
way, so that at best one obtains an approximation to c2 (z) and Vc.2tz) for any given Z.

There are various forms of approximation in which the continuous probability distribution

is replaced by a -well chosen" discrete distribution concentrated in finitely many points so

as to obtain upper or lower bounds. Other forms of approximation in two-stage stochastic

programming rely on sampling of the probability distribution.

The kinds of problems of optimization under uncertainty that have stimulated the

work under this grant are large-scale stochastic programming problems with dynamical

structure generally extending over a number of future "stages." In all stochastic program-

rming, the goal is to make a wise choice of a required here-and-now decision. Again. the
difficulty is that this decision must be taken in advance of full knowledge of the realizations

of certain random variables, such as the demands, system failures. or situational emergen-

cies that rmght occur. Ordinary deterministic optimization assumes such knowledge and.

by relying on this idea despite the realities, produces "fragile" decisions which could have
unpleasant outcomes. Stochastic programming attempts to identify a more robust sort

of decision by utilizing various representations of how the future might evolve, and then

providing the mechanism that enables the here-and-now decision to hedge against negative

eventualities but take advantage of positive ones.

Any representation of the future requires a high degree of simplification if a prob-

lem is to be kept manageable, but even a greatly reduced model can be far superior to a
deterministic one. Until the last few years, most computational work in stochastic pro-

gramming has in fact centered on two-stage models. where the here-aind-now ,',' ision is

supplemented by only by one subsequent opportunity for recourse. in ('ontr,-,t. the work

under this grant has been aimed at pioneering the case where recourse actions will be

possible at more than one future time, so that the problem is multiitage. Necessarily then.

the dynamical structure of decision-making becomes a key topic for 'nalysis. even though.
as always, the end product of the theory is just a well hedged in;ital decision.

To avoid taking on too many difficulties at once. the pro iect has mainly been forniu-

lated in terms of problem models in the category of extended linear-quadratic programmzng.

Mathematically, this refers to the use of linear constraints but objective functions that may

be linear or quadratic, but could also just be piecewise linear or quadratic and thus able to
incorporate standard types of penalty terms. (A failing of some past work in optimization

under uncertainty was a treatment of all constraints as if they were black or white, instead

of having gray shades which correspond to the invoking of penalty costs as desired values

begin to slide. The concept and theory of extended linear-quadratic programming was
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developed by the P.I. under predecessor grants from AFOSR.)

On the computational level. therefore. it has been natural to look hard at large-

scale problems of extended linear-quadratic programming in which a special dynamic and

stochastic structure is present. A prime goal has been the discovery of features within such

structure that can be used to decompose a large-scale problem iteratively into smaller tasks.

and the numerical experimentation with algorithms based on such features. The efforts

in this direction have focused on Lagrangian saddle point representations of optimality,

which have revealed a number of new algorithmic possibilities.

As a natural counterpart, research has proceeded on how problems beyond the mold

of extended linear-quadratic programming could be approximated sensibly by such prob-

lems in a local sense. This has involved the analysis of data perturbations and their effects

on solutions. The perturbational results. utilizing nonsmiooth anldysis. have been applied

in turn to questions of approximation that arise in replacing the true random variables in

a problem by discrete variables generated through random sampling. This has led to a

statistical theory of the behavior of optimal solutions in stochastic programming.

Taking part in the project, besides the P.I. himself, have been a number of the P.I.'s

current or past Ph.D. students, as well as Roger Wets. a long-time collaborator. All told,

the grant has supported the production of

e 12 technical articles now in print or soon to be

* 4 more research articles, one already submitted for publication, and three more as

technical reports not yet in publication form

* 2 documented computer codes for new numerical methods of solution

* 3 doctoral dissertations completed. two others in the making. In addition. many new

research results have been obtained that are still being augmented and will be written

up in the near future.

Scenarios and Hedging

First on the list of publications to be described is --Scenarios and policy aggregation in

optimization under uncertainty" [1], written with Roger Wets. This was put together

under the predecessor AFOSR grant. but was substantially reworked and improved during

the period being reported on here. The paper makes a very substantial contribution to the

practical feasibility of techniques for optimization under uncertainty, and indeed. it has

received much attention in the stochastic programming community.

The distinguishing feature in [1] is that a sophisticated statistical or probabilistic

background for a given problem is not at all assumed. Rather. it is assumed only that

the modeler can come up with a finite set of "scenarios" representing how the future
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may evolve and can describe how these scenarios branch, as well as supply -uesses as

to the branching probabilities. Where at present people simply solve the deterministli'

scenario subproblems corresponding to the different choices of the future, anrd then by

nothing firmer than vague intuition try to come up an appropriate compromise not based
so dangerously on optimizing from the perspective of a soothsayer. the paper shows how

to iteratively modify such subproblems and aggregate their solutions so as to eventually

create a policy that is optimal in a certain natural sense. It builds in this way on whatever

solution technology is already available for the subproblems.

While the scenario hedging method in [1] is attractive from several angles. and is

virtually the first algorithm designed directly for multistage, rather than merely tvwo-stage.

problems., its rate of convergence is slower than one would like. Therefore. efforts have been

made to speed up convergence through supplementary devices. Paper [13], also written

with Wets, has this aim. It makes improvements in terms of a kind of cutting plane

approximation to the dual elements that are needed in representing the price of future

information in the iterated subproblems.

Envelope Methods

Paper [2], "Computational schemes for large-scale problems in extended linear-quadratic

programming," sets up a new framework for solving problems of finding a saddle point

of a linear-quadratic convex-concave function on a product of polyhedral sets in spaces of

high dimension. Finding such a saddle point is equivalent to solving an extended linear-

quadratic programming problem along with its dual. The saddle point framework was

shown in papers written by Roger Wets and the P.I. tinder the predecessor AFOSR grant

to be a natural one for multistage stochastic optimization. Most of the literature ,n umier-

ical techniques in this area has been aimed instead at purely primal or dual forrmulations

reflecting the traditional paradigms of linear and quadratic programming with hard con-

straints, but because of this bias certain special features have been missed by others. It

was not noticed that, in saddle point form, one is able to achieve an important simplic-

ity of problem representation despite the use of penalty terms for constraints, which is a

necessity often in the face of uncertainties. Furthermore, this simplicity can be gained in

such a way that the Lagrangian function, for which one wishes a saddle point, is "dou-

bly decomposable." This means that if one fixes either the primal or dual argument, the

Lagrangian is highly separable in the other argument.

Paper [21 lays down the rules for exploiting this sort of double decomposability and. in

the proct !s, introduces a new class of so-called finite envelope methods. Such techniques are

related to the finite generation methods in stochastic programming that were introduced
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earlier by Wets and the P.I. (again in research supported by AFOSR). but the latter

required either the primal or the dual dimension to be low. This is appropriate only in

the two-stage case of decision structure. however. For the new methods. convergence is

established when certain line search steps are included. Line search appears feasible in

consequence of the double decomposability.

The same themes are continued in the paper "Large-scale extended linear-quadratic

programming and multistage optimization" [3]. The emphasis in this case is on the role of

the dynamical structure and how to take advantage of it in ways other than the well trodden

ones in mathematical pr-'gramming, which involve sparsity patterns in large matrices.

In order to provide for numerical testing of finite envelope methods, a FORTRAN

code was written by Stephen E. Wright. a Ph.D. student, and documented in [9]. ( Wright is

now at the T. J. Watson IBM Research Laboratories in Yorktown H nights. New York. where

lie is a key member of a team devoted to the development of stochastic programming.) The

code was modularized so that parts could also be utilized and extracted for various other

projects as well. It concentrated on problems with discretized dynamics, which made it

possible readily to generate test examples with large numbers of variables, but nevertheless

possessing inherent stability and solutions that readily could be verified.

Another Ph.D. student, Ciyou Zhu, developed the finite envelope idea further and

showed it could lead to algorithms analogous to conjugate gradients or steepest descent,

but able to cope with box constraints as well as the discontinuities of second derivatives

that underlie the structure of extended linear-quadratic programming problems. Zhu made

use of Wright's code [9] to test these algorithms numerically alongside of the basic finite

envelope algorithms in [2]. He was able to solve large-scale dynamical problems with many

time periods, involving as many as 100.000 primal and 100.000 dual variables. The test

results have been presented in paper [10]. which also develops the theory behind the special

algorithms.

These algorithms turned out to be superior to the basic ones, but all the finite-

envelope algorithms were successful in tackling difficult problems whose structure has so

far been rather neglected or poorly understood. Zhu's versions derive from a novel concept

of projected gradient iterations pursued simultaneously in the primal and dual problemis

in such a way that massive decomposition can take-place. A new form of "information

feedback" between the primal and dual calculations leads to rather dramatic speedups.

Even a version of the procedure that resembles steepest-descent, a first-order method, ends

up behaving almost like a second-order method in its convergence properties. Something

important seems to have been uncovered here, but the theoretical implications are yet to

have been fully grasped in their potential for , *ension to other schemes.
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For problems of extended linear-quadratic programming on a smaller scale. Zhu wrote

a FORTRAN code independent of Wright's. This has been documented by Zhu and the

P.I. in [11]. Zhu's dissertation .12] was completed in August. 1991. It lays down the

theory behind his primal-dual projected gradient algorithms. It also includes a remarkable

technique for accelerating the proximal point algorithm as an outer scheme to introduce

strong convexity and stabilize the extended linear-quadratic subproblems.

Supporting work on the properties of extended linear-quadratic programming has

been carried out in the P.I.'s papers [14] and [171. The recent paper [15], "Lagrange

multipliers and optimality," likewise falls in this category, but builds the foundations for

approximating more general problems by ones of this type.

Perturbation and Approximation

The Ph. D. dissertation of Steve Wright [8], -ompleted in December of 1990. grew out of his

work with setting up code for our numerical experiments on decomposition using finite-

envelope methods. as already described. It provides important theoretical support not

only for this specific endeavor, but also for other algorithmic developments. Basically, the

dissertation concerns the approximation of underlying infinite-dimensional problems (with

continuous probability or continuous time) by discretized finite-dimensional problems. and

the establishment of crite.ia under which the solutions to the discretized problems converge

to one for the underlying problem as the approximations get finer.

This may sound like a traditional topic, but in the setting required here a major

challenge is encountered. The core of the difficulty is that the approximations should

not merely be in some abstract sense, but rather of a special form which our work had

earlier identified as especially conducive to computations, namely one allowing for massive

decomposition and parallelization. This means a dual as well as primal discretization,

which goes beyond traditional thinking. Wright has been able in [8J to prove powerful

theorems in this respect, and for such a purpose even had to (to innovative studies on the

frontiers of nonsmooth analysis in this area of optimization.

Another type of approximation has been pursued in the paper "Sensitivity analysis

for nonsmooth generalized equations" [6], which was written by the P.I. with Alan J. King,

a former Ph. D. student of his (1986) whose dissertation on the statistical properties of

solutions to problems in stochastic programming was supported earlier by AFOSR. (King

is now at the IBM Research Center, Yorktown Heights, and is charged with developing

stochastic programming applications and software for IBM. He heads the group to which

Steve Wright belongs, as mentioned above.) This paper concerns local approximation to

the mapping that gives the optimal solution set in a problem as a function of the problem

7



parameters. Such a mapping is unlikely to be differentiable, so it can't 'ust 1,e "inearized"

for example. Instead. concepts of nonsmooth analysis must be used to discover the nature

and properties of the kind of approximation that should be made.

The paper [6] with King has provided the theoretical underpinnings for an impor-

tant advance in simulation techniques in stochastic programming. A formidable difficulty

in computational approaches to stochastic programming is that of justifying tMe i'se of

san,,,ling. The random variables in a given problem of optimization may have complicated

joint distributions, but typically they can at least be sampled empirically or through com-

puter simulation. In that way, one gets a discrete empirical distribution, and this can

be thought of as providing an approximation to the given problem. Since the results of

sampling are themselves random, the approximate problem is in a sense random, and so

hen is its solution. The question then arises as to the statistical properties of this random

solution.

For instance, as the sample size increases, can one count on the distribution of

the random solution concentrating more and more around the true solution to the given

problem? A particularly tantalizing goal would be to understand this question well enough

to give guidelines in advance as to the size of the sample that should be taken. so as to be

sure of a specified degree of statistical confidence in the result of solving the approximate

problem. To get anywhere with this, a broader form of asymptotic statistical theory must

be developed, and this requires the analysis of sensitivity to perturbations in the case of

certain kinds of generalized equations that serve as the optimality conditions in stochastic

optimization.

Article [71, also written with King and entitled "Asymptotic theory for generalized 3I-

estimation and stochastic programming,� goes a long way toward this gtoal. It tackles the

main issue and obtains results on the generalized differentiability of the solution mappings

with respect to parameters on which the equations depend. Central limit properties are

obtained that fit the requirements, even though classical statistical theory isn't applicable.

Crucial as backup for this statistical work, in particular in establishing the special

forms of approximate but nonnormal distributions that come up, has been the theoretical

contribution of the P.I. in [5].

A paper with ideas to those in [6], but in a direct framework of nonlinear optimization,

is [4]. "Perturbation of generalized Kuhn-Tucker points in finite-dimensional optimization."

Again, the issue is what happens to the optimal solution to a given problem relative to

shifts in the parameter values on which the problem depends. When the parameters in

question are random variables, this comes down to the study of the statistical distribution

of the optimal solution as derived from the distributions of the data elements. Another
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application of the res-.lts is equally important. however. This is to the sensitivity of the

optimal policy obtained in the scenario model. discussed earlier, relative to the choice o•f

the probability weights assigned to the branching events in the scenarios. Inasmuch as

these weights may in many cases largely be a product of guesswork, it is essential to have

a handle on how crucial their values are to an optimal policy determined by computation.

The paper [4] provides a method of testing the effects of alterations in the %-alues. If

the effects are large in a given case, this can focus the modeler's attention on a possible

trouble spot in the formulation. where perhaps more detail in the scenarios and harder

thinking about the assigned probability weights is called for. If the effects are small, on

the other hand, the modeler can be reassured that rough guesses are adequate. This can

help to justify a particular problem formulation and is a welcome tool therefore in such a

difficult modeling area, where one has to cope with uncertainty of many kinds.

Another Ph.D. student, Sien Deng, who will get his degree in the summer of 1993.

has worked on this form of approximation in stochastic programming-the sensitivity of

stochastic programming problems to the probability values specified with the data. He has

written a code to test the sensitivity in two-stage models. This code utilizes Zhu's code

[11] as a subroutine.

Yet another student has been done research on the proximal point algorithm in roles

related to those in Zhu's work, which seem to be crucial to the methodology of large-scale

optimization quite generally. This is Maijian Qian. who finished in August of 1992. Her

dissertation [16] provides quasi-Newton schemes for carrying out proximal point iterations

to achieve higher rates of convergence. In effect. the geometry of the space is altered from

the Euclidean geometry of the canonical norm in order to take advantage of the local

geometry generated from a problem's structure around its solution.

Splitting Methods

Still another tack toward the solution of large-scale problemn has been taken in [1S]. This

work, joint between the P.I. and his student George (Hong-gang) Chen. concerns decompo-

sition through "forward-backward splitting." Such splitting, although originally developed

for certain kinds of problem decomposition related to boundary value problems involving

partial differential equations, has not previously been applied to optimization problems in

a Lagrangian format, as is typically advantageous for extended linear-quadratic program-

ming.

We have found that in the case of our problems with dynamic and stochastic structure

a surprising and dramatic form of decomposition occurs: it is only necessary repeatedly

to solve small-scale, deterministic subproblems located in a single time period. Less clear

9



vet is what rate of convergence can be obtained numerically in exploiting this idea. Paper

[17] is devoted to a series of results on convergence which shed light on the issue. blit

much more remains to be done, not only theoretically but on the computational front.

Chen has been coding the method and will soon have experimental data. which will be(-
included in his dissertation along with the additional theory in the technical reports [19r.

[201, and [21]. He will experiment with the numerical examples in stochastic progranrmingn

that Roger Wets and the P.I. have put together for the purpose.
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